首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5716篇
  免费   581篇
  国内免费   330篇
电工技术   126篇
综合类   341篇
化学工业   1874篇
金属工艺   682篇
机械仪表   277篇
建筑科学   279篇
矿业工程   200篇
能源动力   226篇
轻工业   188篇
水利工程   88篇
石油天然气   142篇
武器工业   52篇
无线电   297篇
一般工业技术   1305篇
冶金工业   237篇
原子能技术   180篇
自动化技术   133篇
  2024年   12篇
  2023年   109篇
  2022年   172篇
  2021年   208篇
  2020年   198篇
  2019年   208篇
  2018年   197篇
  2017年   245篇
  2016年   208篇
  2015年   225篇
  2014年   284篇
  2013年   434篇
  2012年   347篇
  2011年   430篇
  2010年   275篇
  2009年   333篇
  2008年   307篇
  2007年   315篇
  2006年   317篇
  2005年   252篇
  2004年   268篇
  2003年   195篇
  2002年   167篇
  2001年   137篇
  2000年   122篇
  1999年   96篇
  1998年   88篇
  1997年   90篇
  1996年   81篇
  1995年   56篇
  1994年   50篇
  1993年   39篇
  1992年   46篇
  1991年   32篇
  1990年   20篇
  1989年   17篇
  1988年   8篇
  1987年   6篇
  1986年   7篇
  1985年   10篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
排序方式: 共有6627条查询结果,搜索用时 31 毫秒
41.
In recent years, hepatitis B core protein virus‐like particle (HBc VLP) is an impressive biomaterial, which has attracted considerable attention due to favorable properties such as structural stability, high uptake efficiency, and biocompatibility in biomedical applications. Heretofore, only a few attempts have been made to apply it in physical, chemical, and biological therapy for cancer. In this study, a tumor‐targeting RGD‐HBc VLP is first fabricated through genetic engineering. For image‐guided cancer phototherapy, indocyanine green (ICG) is loaded into RGD‐HBc VLP via a disassembly/reassembly pathway and electrostatic attraction with high efficiency. The self‐assembled stable RGD‐HBc VLP significantly improves body retention (fourfold longer), aqueous stability, and target specificity of ICG. Remarkably, these positive reformations promote more accurate and sensitive imaging of U87MG tumor, as well as prolonged tumor destruction in comparison with free ICG. Moreover, the photothermal and photodynamic effect on tumors are quantitatively differentiated by multiple linear regression analysis. Overall, less‐potent medicinal ICG can be perfectly rescued by bioengineered HBc VLP to realize enhanced cancer optotheranostics.  相似文献   
42.
采用对喷涂粒子进行槽内约束的电爆喷涂方法,研究了喷涂粒子在垂直槽中的约束调控机制及其沉积行为。结果表明:约束深度达20mm时,即喷涂距离为丝径的100倍时,仍可获得连续、均匀的涂层。约束宽度从6mm减小至2 mm,涂层表面呈现出由粗糙的"丘壑状"形貌向均匀的"薄饼状"形貌逐渐过渡的演变趋势,且涂层厚度显著提高;能量密度从57 J/mm~3提高至152 J/mm~3,同样可提高涂层厚度并改善涂层均匀性。对喷涂粒子进行收集,发现减小约束宽度和提高能量密度均可有效细化喷涂粒子并使喷涂粒子粒径分布更加均匀。分析认为,由焦耳加热导致的"热膨胀效应"和击穿电弧伴生的"压力效应"共同决定电爆冲击波和喷涂粒子的形成,并随能量密度和约束参数的变化,对喷涂粒子表现出不同的约束调控作用,使其沉积行为产生显著差异。  相似文献   
43.
为改善力学性能,采用新型Al-5Ti-1B-1RE中间合金细化剂和Al-10Sr中间合金变质剂对铸态多元铝硅A356铝合金及在铸态A356铝合金中按一定比例添加Cu、Mn、Ti等元素组成的新型铝合金进行复合细化变质处理。采用光学显微镜(OM)、扫描电镜(SEM)及能谱、透射电镜(TEM)和电子式万能试验机(CSS-44100)等技术对多元铝硅合金中的第二相粒子的形态分布特征及强化机制进行分析。结果表明:经复合细化变质处理的A356铝合金中的第二相粒子共晶硅相由粗大的片层状转变为典型的纤维状,在软韧相α-Al基体晶界处较均匀的析出,α-Al相晶粒尺寸显著变小,其强化机制主要是第二相粒子共晶硅Hall-Petch晶界细晶强化;在新型铝合金中除第二相粒子共晶硅外,还存在其它较弥散分布在晶界或晶内的第二相强化粒子,多种强化机制共同起作用,当分布在晶界上时,主要是Hall-Petch强化机制;当分布在晶内时,主要是Orowan强化机制,成为阻碍位错运动的有效障碍,起到强化作用。  相似文献   
44.
In biomass processing fluidized beds are used to process granular materials where particles typically possess elongated shapes. However, for simplicity, in computer simulations particles are often considered spherical, even though elongated particles experience more complex particle– particle interactions as well as different hydrodynamic forces. The exact effect of these more complex interactions in dense fluidized suspensions is still not well understood. In this study we use the magnetic particle tracking technique to compare the fluidization behavior of spherical particles to that of elongated particles. We found a considerable difference between fluidization behavior of spherical versus elongated particles in the time-averaged particle velocity field as well as in the time-averaged particle rotational velocity profile. Moreover, we studied the effect of fluid velocity and the particle's aspect ratio on the particle's preferred orientation in different parts of the bed, which provides new insight in the fluidization behavior of elongated particles.  相似文献   
45.
A numerical procedure involving the dense discrete phase model (DDPM) is used to calculate solid particle erosion. DDPM works in two mechanisms. First, the discrete particles are treated as a pseudofluid, and the interaction among particles is evaluated by solving the governing equations of the pseudofluid. Second, the equivalent pressure of the pseudofluid is applied to a single particle to reflect the blocking effect of high-concentration particles. The numerical procedure is well verified by comparison with the experimental data picked from a direct impact test. In addition, the DDPM predictions are compared with the discrete element model (DEM) predictions in detail. Both methods show that the predicted mass loss caused by sand per unit mass decreases with an increase in sand concentration. DDPM indirectly considers the influence of particle interactions on solid particle erosion, and the predicted erosion contours are more uniform and smoother than the DEM-predicted contours.  相似文献   
46.
Heat transfer from spheres can be influenced by a varying degree of slip at the fluid‐particle interface along with the rheology of the surrounding continuous liquid and adjacent spheres. Thus in this study, the effects of dimensionless velocity slip parameter (λ) along with power‐law fluid rheology and other pertinent kinematic flow and heat transfer parameters on isotherm contours, local and average Nusselt numbers of assemblages of spherical slip particles are presented. This is done by adopting a segregated approach where dimensionless momentum and energy equations are solved by SMAC algorithm formulated in spherical coordinates within the finite difference formulation. Before obtaining new results, grid independence studies for either extreme values of power‐law consistency index of non‐Newtonian fluids are carried out. Finally, the major contribution of this study is the development of a correlative equation for the average Nusselt number of assemblages of spherical slip particles in power‐law fluids based on the present results (5880 data points) as a function of pertinent dimensionless parameters.  相似文献   
47.
《Ceramics International》2022,48(20):29629-29640
In this work, Ni–Mo–SiC–TiN nanocomposite coatings were deposited on aluminium alloy by pulse electrodeposition with various electrodeposition parameters. The influences of the pulse frequency and duty cycle on the phase structure, morphology, mechanical and corrosion performance of the coatings were systematically investigated. The results showed that with increasing pulse frequency and decreasing duty cycle, the content of embedded duplex nanoparticles increased, and the grains refined gradually. The nanocomposite coating that was prepared at 20% duty cycle and 1000 Hz pulse frequency exhibited compact, uniform, and fine microstructures with the maximum incorporation of nanoparticles (6.81 wt% TiN and 1.72 wt% SiC). The wear rate and average friction coefficient then declined to 4.812 × 10?4 mm3/N·m and 0.13, respectively, with a maximum microhardness of 519 HV. Simultaneously, the corrosion current density was reduced to 3.11 μA/cm2, and a maximum impedance of 34888 Ω cm2 was exhibited. The uniformly distributed duplex nanoparticles acted as a hindrance, which consequently supported the enhancement of corrosion and wear resistance. By investigating the variation of the pulse diffusion layer with electrical parameters, it was discovered that when the crystallite size is equivalent to or smaller than the diffusion layer thickness, it would be easier to cross the diffusion layer to incorporate in the coating. Additionally, the effects of various duty cycles and pulse frequencies on the nucleation process of the grains were discussed.  相似文献   
48.
The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono‐ and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV‐Vis, BET, and TEM analysis. The effect of incident light, type and content of mono‐ and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as‐prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt‐TiO2 and Cu/Pt‐TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water‐damaged building using mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono‐ and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2.  相似文献   
49.
Barium cerate (BaCeO3) is one of the possible additions to bulk YBa2Cu3O7 single-grain superconductors to suppress the growth of Y2BaCuO5 (Y211) particles. This paper investigates the synthesis of barium cerate powder and its use in YBa2Cu3O7 bulk superconductors. Crystalline barium cerate was synthesized by solid-state reaction, by co-precipitation of oxalates and by sol-gel method. Final calcination was held in air or in vacuum. It is shown that the most efficient in refining Y211 is nanocrystalline barium cerate prepared by sol-gel method calcined in vacuum. The effective refinement of Y211 particles occurred over the entire interval of nanocrystalline BaCeO3 addition from 0.38 to 1.90 wt%. The optimal concentration of nanosize barium cerate was determined, microstructure and superconducting properties were characterized. The effect of Y211 content on trapped field in YBCO bulks with addition of nanocrystalline barium cerate is shown.  相似文献   
50.
A novel approach for preparing drug-containing particles (DCPs) with controlled size distribution and high drug loading was developed using melt granulation. This approach comprises two steps. First, melting component adsorbed particles (MAs) were prepared by mixing and heating the melting components with a porous carrier using a high shear granulator. Second, DCPs were prepared by layering the drug on MAs using a fluidized bed rotor granulator. The time taken for both steps was within 30 min. Adding the polymer in the second step remarkably increased the viscosity of the mixture of melting components and the polymer. Therefore, DCPs could be successfully loaded with a high amount of drug (70% w/w). The particle size distribution of the DCPs was narrow, and it depended on that of the MAs. The flowability of the DCPs was excellent, and the sphericity was close to 1. A unique particle formulation mechanism was suggested based on the observation of DCPs using scanning electron microscopy. The manufacturing time and DCP characteristics were not affected by the manufacturing scale. In conclusion, we have successfully developed a highly efficient novel approach for preparing optimal DCPs through melt granulation, named “Melt Adsorption and Layering with Porosity Core” (MALCORE®).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号